
  

 

 

Supplementary Material 

Materials and Methods 

Literature mining and manual curation of transcriptional regulatory interactions in 

Arabidopsis thaliana 

In this study, we used two data sources, PubMed Abstracts and ResNet Plant 3.0 (now called 

Pathway Studio Plant), a commercial knowledgebase for molecular relationships mined from 

more than 190,000 PubMed abstracts and 60,000 full-text articles from 28 plant-specific journals 

(for more details see http://www.elsevier.com/online-tools/pathway-studio/about/pathway-studio-

plant)
 
(Nikitin, et al. 2003), to collect verified transcriptional regulatory interactions in A. 

thaliana. Using each of the 1,701 A. thaliana transcription factors (TFs, „proteins that show 

sequence-specific DNA binding and are capable of activating or/and repressing transcription‟) in 

PlantTFDB 2.0 (Zhang, et al. 2011) as input keywords, we retrieved 4,150 TF-associated 

interactions (supplementary fig. S1A) from ResNet Plant 3.0 and identified 3,211 TF-associated 

interactions from PubMed abstracts using MedScan (Novichkova, et al. 2003). After pooling the 

results, we obtained 4,663 TF-associated interactions.  

We subsequently manually assessed each interaction in the following manner: 

1) Screened for transcriptional regulatory interactions. Transcriptional regulatory 

interactions represent interactions between TFs and the promoters of the target genes. 

After reviewing the original texts, we removed 3,134 interactions falsely recognized by 

the text-mining tools or non-transcriptional regulatory interactions (e.g., protein-protein 

interactions).  

2) Identified transcriptional regulatory interactions missed by the text-mining tools. 

Through reviewing the original texts, we further identified 195 transcriptional regulatory 

interactions that were reported in original texts but missed by the text-mining tools.  

3) Assigned a regulatory activity for each interaction. TFs activate and/or repress the 

transcription of target genes through binding specific cis-elements. Through reviewing 

original texts and original papers, we further assessed the regulatory activity 

(activation/repression) of each interaction and removed 55 interactions without 

determined regulatory activity. 

http://www.elsevier.com/online-tools/pathway-studio/about/pathway-studio-plant
http://www.elsevier.com/online-tools/pathway-studio/about/pathway-studio-plant


4) Mapped the gene names of interactions to The Arabidopsis Information Resource (TAIR) 

IDs. To this end, we removed 26 interactions with gene names that could not be mapped 

to a unique TAIR ID and 212 redundant interactions.  

Ultimately, we collected 1,431 functionally confirmed transcriptional regulatory interactions, 

44.5% (637 of 1,431) of which represented regulations between two TFs in Arabidopsis, and 

constructed an Arabidopsis transcriptional regulatory map (ATRM) (supplementary fig. S1B). 

 

Biological process assignment 

Based on Gene Ontology (GO) annotation with experimental evidence (evidence code: EXP, IDA, 

IPI, IMP, IGI, or IEP; version: TAIR 6/05/2012) (Berardini, et al. 2004), we identified genes 

involved in developmental processes (GO:0032502 developmental process) and genes involved 

in stress response processes (GO:0006950 response to stress, GO:0009607 response to biotic 

stimulus, or GO:0009628 response to abiotic stimulus). The genes involved in both 

developmental and stress response processes were labeled “Dev. & Res.” Genes lacking 

“biological process” annotations (including those without biological process annotation or with 

biological process annotation but without experimental evidence) and genes not involved in the 

developmental or stress response processes were classified as “other”. 

 

Quality evaluation of the ATRM 

Because TFs regulate the transcription of target genes, TFs and target genes co-exist in the same 

biological process. The proportion of regulations that co-exist in the same biological process is 

typically larger in high-quality transcriptional regulatory networks than in low-quality networks. 

After combining all TFs (“TF list”) in the regulator column of AtRegNet and the ATRM, we 

mapped their “biological process” (BP) annotations onto plant GO slim using the map2slim tool 

(http://search.cpan.org/~cmungall/go-perl/scripts/map2slim). We subsequently selected GO slim 

terms with no fewer than 10 mapped TFs and filtered out those terms too general for a TF, such 

as “regulation of RNA biosynthetic process,” for continued analysis. TFs in the “TF list” and all 

genes mapped to the selected slim terms were marked as “mapped TFs” and “mapped genes”, 

respectively. All combinations between “mapped TFs” and “mapped genes”, except the self-

regulations, were used as the background. The regulation in any of the selected biological 

processes described above was regarded as “co-existing” in the same process. One-tailed 

http://search.cpan.org/~cmungall/go-perl/scripts/map2slim


binomial tests between different datasets were performed to confirm that the proportion of 

regulations in the same biological process of the test sample was no greater than that of the 

background. We evaluated the quality of the ATRM through comparisons of the proportion of 

regulations co-existing in the same biological process with the proportion of regulations in the 

background, AtRegNet, and AtRegNet (confirmed) (high-reliability regulations in AtRegNet 

(Yilmaz, et al. 2011)). 

 

Identification of transcriptional regulatory communities 

In networks, communities are defined as components with more intra-regulations than inter-

regulations, which usually perform relatively specific functions (Fortunato 2010). Employing a 

Markov clustering algorithm, we classified the ATRM into 156 communities using CytoMCL 1.1 

(Guzzi and Cannataro 2012) with an inflation parameter of 2.0. Sixty-two of the identified 

communities containing no fewer than five members were used for subsequent analyses. GO 

enrichment for each community was performed using topGO (Alexa and Rahnenfuhrer 2010), 

and genes with BP annotation were used as the background. The P values were adjusted for 

multiple tests using the method of Benjamini and Hochberg (Benjamini and Hochberg 1995). 

Based on the enriched GO terms, we assigned a name for the community whose enriched terms 

were consistent in terms of biological processes.  

 

Measurement of the global topological structure 

We used the largest connected component covering 98.7% and 94.2% of the regulations of the 

developmental and stress response sub-networks, respectively, as the representative network for 

the following analysis. Four parameters (<Targets per TF>, <TFs per target>, <Path length>, and 

<Clustering coefficient>; “< >” indicates the average value in networks) were used to measure 

the global topological structure of the transcriptional regulatory networks. In a transcriptional 

regulatory system, <Targets per TF> indicates how many targets could be immediately regulated 

by this TF; <TFs per target> measures the complexity with which a gene is regulated; <Path 

length> measures how long it takes for a signal to transfer from a TF to terminal genes; and 

<Clustering coefficient> indicates the complexity of regulations among TFs (Luscombe, et al. 

2004). The global topological parameters of the representative developmental sub-network and 

stress response sub-network were calculated using igraph 0.6 (Csardi and Nepusz 2006). 



 

Calculation of the information content of the TF binding matrices 

High-quality TF binding matrices in plants were downloaded from TRANSFAC (professional 

2011) (Matys, et al. 2006). The following methods were used to map the TRANSFAC id to the 

TAIR id. 1) For A. thaliana TFs with a gene alias in TRANSCFAC, we used the gene alias to 

map the TFs directly. 2) For TFs of other plant species or those without a gene alias in 

TRANSFAC, we used BLAST (Altschul, et al. 1997) to search against Arabidopsis genes to 

identify the best one-to-one pair. For TFs with two or more binding matrices, the matrix with the 

most sequences in construction was selected for the subsequent analysis. 

The information content (IC) of the binding matrix of a TF measures the distinction of the 

binding profile from arbitrary sequences (Schneider, et al. 1986; Hertz and Stormo 1999). In this 

study, the previously described methods (Hertz and Stormo 1999) (equations 2 and 3) were 

adopted to calculate the IC of the binding matrices. To avoid any bias resulting from the 

difference in the sequence numbers used to construct the matrices, we adopted an adjusted 

pseudo count   in the calculation (equation 1). TFs with two or more binding matrices were used 

to determine   to ensure that the ICs of the TF binding matrices were comparable and not subject 

to systematic bias among matrices from different sequence numbers. AT1G13260 from the RAV 

family, which has two different types of DNA-binding domains, represented a special case, and 

we added the ICs of the two corresponding binding matrices together to represent its IC.  
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  is the pseudo count added according to the number of sequences s used to construct this matrix; 

     is the count of nucleotide   at position   in the binding matrix,    is the prior probability of 

nucleotide  , and      is the corrected frequency of nucleotide   at position  ;   is the width of the 

matrix, and   is the IC of the binding matrix. 



To determine whether the calculated IC of the binding matrices of the TFs (Available at 

http://atrm.cbi.pku.edu.cn/download.php) could successfully represent the binding specificity of 

each TF, we predicted the putative target genes in the upstream 1,000 bp of the A. thaliana 

genome using Match (Matys, et al. 2006). A predefined cutoff for each matrix in TRANSFAC 

was used to minimize the sum of false positives and false negatives (Matys, et al. 2006). The high 

negative correlation between the IC of the binding matrix and the number of predicted targets 

(Spearman‟s rank correlation ρ = -0.76 and P = 7.72e-15) suggests that the IC of the binding 

matrices of TFs calculated using this method successfully represents the binding specificities of 

the TFs. 

 

Identification of network motifs 

We used Mfinder 1.2 (Milo, et al. 2002) to screen all possible three-node regulatory patterns 

(supplementary fig. S6A) and to identify enriched regulatory patterns among them. By generating 

1,000 randomized networks with out-degree, in-degree, and mutual-degree conserved, we 

identified the three-node regulatory patterns that appeared significantly higher than those in 

randomized networks under default thresholds (P < 0.01, Mfactor > 1.10, and Uniqueness ≥ 4). P 

was calculated based on 1,000 randomized networks, Mfactor is the ratio between the number of 

this regulatory pattern in the real network and its number in randomized networks, and 

Uniqueness is the number of distinct sets of nodes involved in this regulatory pattern in the real 

network (Milo, et al. 2002). 

To determine whether there was any novel network motif in the Arabidopsis transcriptional 

regulatory network compared with those of unicellular organisms, we also identified network 

motifs in E. coli and S. cerevisiae. The transcriptional regulatory network of E. coli was 

downloaded from RegulonDB 8.0 (Salgado, et al. 2013), and that of S. cerevisiae with direct 

evidence and confirmed function was retrieved from YEASTRACT (Abdulrehman, et al. 2011). 

We further classified the network motifs in the ATRM into two classes, motifs in development 

and motifs in stress responses, based on the following criteria: when two or more nodes of the 

three nodes were involved in the developmental process and no node was involved in the stress 

response process, this motif was assigned as a motif in development, and vice versa for motifs in 

the stress response. The TFs with BP annotations were used as the background for the biological 

http://atrm.cbi.pku.edu.cn/download.php


process enrichment analysis of the TFs involved in network motifs. P was adjusted for multiple 

tests using the method of Benjamini and Hochberg (Benjamini and Hochberg 1995). 

 

Kinetic simulation of the novel network motifs in Arabidopsis 

The changing rate of the transcription level of a gene represents the combined effect of the basic 

transcription rate, the rate of transcriptional activation/repression of other genes, and the 

degradation rate. We referred to kinetic equations of a previous study (see equations 4-6) 

(Mangan and Alon 2003) to simulate the function of the novel network motifs in Arabidopsis. In 

equations 4-6, Bi represents the basic transcription rate of gene i. Kji is the transcriptional 

activation or repression coefficient of gene i through gene j, and  (     ) is the transcriptional 

activation/repression rate of gene i through gene j. For activation, f(j, Kji) = KjiCj/(1+ KjiCj), and 

for repression, f(j, Kji) = (1-KjiCj)/(1+ KCmax), where Cj is the transcription level of gene j.    is 

the degradation rate of gene i. For a gene activated through two TFs, e.g., Z activated through X 

and Y, the equation f(X, Kxz, Y, Kyz) = (KxzCx + KyzCy)/(1 + KxzCx + KyzCy).  
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In our simulation, the lowest transcription level of gene i was 0, and the highest level was 1, 

with a maximum allowable activation/repression rate of 1 (∑   ≤ 1). To fulfill this constraint, 

we used Bi = 0, α = 1, β = 0.5, and Kji = 1. The high expression of gene X represented the signal 

occurring during a defined period (supplementary fig. S6B), and X was transcribed with the 

highest rate 1 at the beginning (supplementary figs. S6C and S6D). Genes Y and Z were initially 

transcribed with rate 0. When the transcription levels of Y and Z were no less than 0.5, these 

genes were activated to activate/repress the transcription of related genes. The high expression of 

X represented one state, and the high expression of Z represented another state. The kinetic 

simulations were performed using ODE45 in MATLAB. The MATLAB source codes are 

available at http://atrm.cbi.pku.edu.cn/download.php. 

 

Classification of ancient and novel TF families 

http://atrm.cbi.pku.edu.cn/download.php


TFs are classified into 58 families according to their signature domains in PlantTFDB 2.0 (Zhang, 

et al. 2011). By dating their birth times based on 28 plants with sequenced genomes, we 

classified 54 TF families appearing in the most recent common ancestor (MRCA) of land plants 

into two types: ancient and novel families. TF families present in any of the nine green alga 

species were defined as ancient families, and TF families present in the MRCA of 19 land plants, 

but absent from the nine green alga species, were defined as novel families.  

To determine whether the ancient families were previously present in E. coli, S. cerevisiae, 

or H. sapiens, we used the built-in TF prediction pipeline of PlantTFDB 2.0 (Zhang, et al. 2011) 

to scan the genome proteins of the three species under a relaxed cutoff (e-value ≤ 0.01 for 

sequence cutoff and domain cutoff). Based on the presence in E. coli, S. cerevisiae, or H. sapiens, 

ancient families were further divided into two types, “Ancient1” and “Anicent2”. When ancient 

families were identified in any of the three species, these families were classified as “Ancient1”; 

otherwise, these families were classified as “Ancient2”. 

 

The wiring preference of ancient and novel TF families in biological processes 

We used a “preference index,” the proportion of genes involved in the developmental or stress 

response processes, to represent the wiring preference of TF families in biological processes. TFs 

involved in the developmental or stress response processes were clustered using BLASTClust 

(Altschul, et al. 1997) to merge highly redundant sequences (cutoff: coverage 0.9 and identity 

0.9). Each cluster was regarded as a “Refgene” in this study. Refgenes only in developmental or 

stress response processes and families that included no fewer than five Refgenes were used to 

calculate the preference index.  

 

The wiring positions of ancient- and novel-family TFs in the ATRM 

We compared the following aspects of the wiring of ancient- and novel-family TFs: “Targets per 

TF,” “TFs per target,” the number of Motifs (5, 6) involved, the number of Motifs (10, 11, 12) 

involved, and the proportion of TFs to target genes. The first two aspects were used to determine 

whether there was any bias in the connectivity between the TFs of ancient and novel families; the 

last three aspects were used to determine whether there was any wiring preference in the 

transcriptional regulatory network between the TFs of ancient and novel families. Self-

regulations in the ATRM were removed in this analysis. TFs in the ATRM with a degree of no 



fewer than four (the median degree of TFs in the ATRM) were used to calculate the wiring of 

these TFs in the network. When calculating the proportion of TFs in the targets, we only used 

TFs with no fewer than four targets. For each aspect, we summarized the numbers of novel- and 

ancient-family TFs that were fewer than and more than the average value. One-tailed Fisher‟s 

exact tests were performed to compare the wiring preferences of novel- and ancient-family TFs. 

 

Classification of ancient and novel TF families in E. coli, S. cerevisiae, and H. sapiens 

The TFs of E. coli, S. cerevisiae, and H. sapiens were downloaded from DBD (Wilson, et al. 

2008), and only TFs predicted through Pfam HMMs were used in this study. The taxonomic 

distribution of TF families was adopted from V. Charoensawan et al. (Charoensawan, et al. 2010). 

Novel families in E. coli, S. cerevisiae, and H. sapiens were considered as those with taxonomic 

distributions limited to Proteobacteria, Fungi, and Metazoa, respectively. 

 

Binding specificities of TFs and the proportion of TFs to target genes in E. coli, S. cerevisiae, 

and H. sapiens 

The transcriptional regulatory networks in E. coli, S. cerevisiae, and H. sapiens were downloaded 

from RegulonDB 8.0 (Salgado, et al. 2013), YEASTRACT (Abdulrehman, et al. 2011), and the 

ENCODE project (Gerstein, et al. 2012), respectively. The TF binding matrices of E. coli were 

downloaded from RegulonDB 8.0 and those of H. sapiens were downloaded from TRANSFAC 

(professional 2011, only matrices from SELEX were used) (Matys, et al. 2006). For E. coli and H. 

sapiens, the ICs of the TF binding matrices were used to represent the binding specificities of 

TFs. Owing to the low resolution of the TF binding matrices and the rich chromatin 

immunoprecipitation (ChIP)-chip data for S. cerevisiae, we directly used target numbers to 

represent the binding specificities of TFs with genome-wide ChIP-chip experiments, and the 

proportion of TFs to target genes indicated the proportion of TFs in the functionally confirmed 

regulations for S. cerevisiae. The classification of TFs and non-TFs in these three species was 

based on the following GO annotations: Ecocyc & EcoliHub (version: 3/15/2013) for E. coli, 

SDG (version: 4/43/2013) for S. cerevisiae, and EBI (version: 4/15/2013) for H. sapiens.  

 

Clustering of TFs descended from a common ancestor 



To investigate whether the wiring preference of novel-family TFs resulted from bias duplication 

of TF individuals, we downloaded orthologous genes to TFs of A. thaliana in A. lyrata, V. 

vinifera, O. sativa, and P. patens from Ensembl Plants (Release 15) (Kersey, et al. 2012), 

respectively. These data were used to cluster TFs that descended from the common ancestors at 

four key time points in the evolution of A. thaliana as “Refgenes” to investigate the distribution 

of these TFs in biological processes (supplementary fig. S8). Only TFs with orthologous genes in 

these species were used in this study. 

 

Identification of TF individuals born during plant landing and classification of old and 

young TF individuals 

Using the methods described above, we clustered the TFs of A. thaliana into 123 Refgenes in the 

MRCA of A. thaliana and P. patens (supplementary fig. S8). According to the orthologous 

assignment of Ensembl Plants (Release 15), we further assigned Refgenes without orthologous 

genes in C. merolae and C. reinhardtii as genes born during plant landing. For Refgenes with the 

same orthologous gene(s) in C. reinhardtii, the Refgene with the highest sequence similarity to 

its orthologous gene(s) was assigned as the gene born before this period, and other Refgene(s) in 

this orthologous group were assigned as genes born during this period. 

Using the same method, we assigned A. thaliana TF individuals in the 123 Refgenes born 

before and after the divergence of the MRCA of A. thaliana and P. patens as old and young TF 

individuals, respectively. 

 

  



Supplementary Text: 

Comparison of the regulations in the ATRM with the reported Arabidopsis floral meristem 

establishment and specification pathway 

By allowing us to integrate transcriptional regulatory interactions reported in the vast literature, 

literature mining effectively unveiled “novel” interactions that would be “invisible” when 

considering any single source, facilitating the identification of novel global patterns and the 

generation of new hypotheses. Irish previously summarized the Arabidopsis floral meristem 

establishment and specification pathway (Irish 2010). When retrieving interactions among these 

genes in the reported pathway from the ATRM, 89% (24 of 27) of the known regulations in the 

reported pathway were successfully recalled. In addition, the ATRM added another 27 novel 

edges to this reported pathway (fig. 1D). Interestingly, novel interactions for AP2 revealed a 

potential mechanism for the function of AP2 as an A-class gene. 

 

Robustness and significance of the differences in the global topological structures of the 

developmental and stress response sub-networks 

We observed that the developmental and stress response sub-networks were different in global 

topological structures. Owing to the limitations of the current studies, the ATRM does not 

incorporate all of the transcriptional regulations in Arabidopsis. To determine whether the 

observed differences reflected a connectivity bias arising from the collection of regulations, we 

compared the connectivity of TFs involved in developmental and stress response processes, and 

observed no significant difference in either the ATRM (two-tailed Wilcoxon rank-sum test P = 

0.71; supplementary fig. S3A) or the largest connected networks used to calculate the global 

topological parameters (two-tailed Wilcoxon rank-sum test P = 0.93; supplementary fig. S3B).  

We further performed the following analyses to assess the robustness and significance of the 

observed differences. To determine whether the representative sub-networks sampled from the 

Arabidopsis transcriptional regulatory networks robustly reflected the differences between the 

two sub-systems, we randomly sampled 50%, 60%, 70%, 80%, and 90% of the regulations from 

the developmental and stress response sub-networks 1,000 times, and the results showed that the 

differences between these two sub-networks were robust (fig. 2B). To determine whether the 

observed differences reflected the different sizes of the developmental and stress response sub-

networks, we sampled developmental sub-networks comprising the same number of regulations 



as those in the stress response sub-networks 10,000 times, which revealed that the differences 

between these sub-networks were significant (supplementary fig. S4A). In addition, we obtained 

consistent results using a different version of the GO annotation (supplementary fig. S4B) or with 

genes involved in both developmental and stress response processes counted during network 

classification (supplementary fig. S4C). Moreover, the binding specificities of the TFs and the 

predicted networks in A. thaliana generated consistent results (supplementary fig. S5 and 

supplementary table S2).  

These results demonstrate that the differences in the global topological structures of the 

developmental and stress response sub-networks are robust and significant. 

 

Other possible reasons for the wiring preference of novel-family TFs in biological processes 

Why are TFs of novel families preferentially wired into developmental processes rather than 

stress response processes? Potential explanations include the following: 1) bias duplication of 

some TF individuals; 2) selective pressure for development during plant landing; 3) the wiring 

preferences of young TF individuals; or 4) the properties of novel-family TFs. Discussions of 

explanations 1-3 follow: 

1) Does the wiring preference reflect the bias duplication of some TF individuals? 

Clustering TFs descended from the common ancestors as “Refgenes” at four key time points 

in the evolution of A. thaliana yielded consistent results (supplementary table S9), suggesting 

that the observed wiring preference was persistently present in its evolutionary history and cannot 

be explained as the bias duplication of some TF individuals.  

2) Did the wiring preference result from selective pressure for development during plant landing? 

By dividing ancient families into families present or absent in E. coli, S. cerevisiae, or H. 

sapiens, we determined that later-born ancient families were also preferentially wired into 

developmental processes (supplementary fig. S9). Compared with the ancient-family TFs born 

during plant landing, TFs of novel families still showed the same wiring preference 

(supplementary table S10), demonstrating that the observed preference did not reflect the 

potential selective pressure for development during certain periods. 

3) Did the wiring preference result from the wiring preferences of later-born TF individuals? 

A comparison of the wiring positions of TF individuals born during different periods revealed 

that later-born TF individuals did not display wiring preferences for developmental processes 



(supplementary table S11), confirming that the properties of novel-family TFs, and not their time 

of birth, affected the wiring preferences of the novel-family TFs.  



Supplementary Figures: 

 

 

 

Supplementary Fig. S1. (A) An example of TF-associated interactions retrieved from ResNet 

Plant 3.0 or mined from PubMed Abstracts using MedScan. (B) The pipeline for the literature 

mining and manual curation of transcriptional regulatory interactions in A. thaliana. 

  



 

 

Supplementary Fig. S2. Cross-regulation with the abscisic acid (ABA)-mediated signaling 

pathway among communities in the ATRM. ABA plays important roles in regulating multiple 

developmental and stress response processes (Cutler, et al. 2010). The ATRM reveals the 

corresponding cross-regulation of the ABA-mediated signaling pathway with the gibberellin- and 

glucose-mediated signaling pathways, the development of seeds and flowers, and the types of 

stresses assessed at the transcriptional level. The numbers in parentheses correspond to 

community IDs. The arrows represent the direction of regulation between the genes in the 

communities. 

  



 

 

Supplementary Fig. S3. Connectivity of the TFs involved in developmental and stress response 

processes in the ATRM. (A) The number of collected connections for the TFs in the ATRM. (B) 

The number of collected connections for the TFs in the largest connected component used to 

calculate the global topological parameters. Two-tailed Wilcoxon rank-sum tests were performed 

to compare the connectivity of the TFs in the developmental process and the TFs in the stress 

response process. 

  



 



 

 

Supplementary Fig. S4. Significance and robustness of the differences in the global topological 

structures of developmental and stress response sub-networks. (A) Comparison of the global 

topological structures of developmental and stress response sub-networks. (B) Comparison of the 

global topological structures of developmental and stress response sub-networks using a different 

Gene Ontology (GO) annotation (combined GO annotations from TAIR10 and EBI, version 

4/09/2013). (C) Comparison of the global topological structures of developmental and stress 

response sub-networks with genes involved in both developmental and stress response processes 

counted during sub-network classification. We sampled 10,000 times from the developmental 

sub-network using the same edge size as that in the stress response sub-network. The black 

dashed lines show the density distribution of the global topological parameters of the sampled 

developmental sub-networks, and the blue lines show the corresponding values for the stress 

response sub-networks. The P values were calculated based on 10,000 samples. 

  



 
 

Supplementary Fig. S5. Binding specificities of TFs involved in the developmental and stress 

response processes measured based on the information content (IC) of the binding matrices. A 

one-tailed Wilcoxon rank-sum test was performed to compare the ICs of the TFs in the 

developmental process and the TFs in the stress response process. 

  



 
 

 

Supplementary Fig. S6. (A) All 13 three-node regulatory patterns. (B-D) Kinetic simulations of 

the functions of the three novel network motifs absent from the unicellular organisms E. coli and 

S. cerevisiae. (B-D) are the simulations for one case each of motifs 11, 10, and 12, respectively. 

In panel (B), X represents the signal; in panels (C) and (D), high X expression represents one 

state, and high Z expression represents another state. Kinetic simulations demonstrate that the 

novel motifs can fulfill the functions of maintenance and the transition of developmental states 

required for cell differentiation and fate decision in multicellular development. 

  



 

 

Supplementary Fig. S7. The binding specificities of TFs and the proportion of TFs to target 

genes in A. thaliana (A), E. coli (B), S. cerevisiae (C), and H. sapiens (D). One-tailed Wilcoxon 

rank-sum tests were performed between TFs with low and high binding specificities. 

 

  



 

 

 

Supplementary Fig. S8. Clustering TFs descended from a common ancestor as a “Refgene” (A) 

and the four key time points used to cluster them (B). The numbers in parentheses represent the 

number of clusters and the number of TFs included in these clusters in A. thaliana. 

  



 

 

Supplementary Fig. S9. The wiring preferences of ancient and novel TF families in biological 

processes. Each point represents a family. Based on their presence in E. coli, S. cerevisiae, or H. 

sapiens, ancient families were further divided into two types, “Ancient1” and “Anicent2”. 

Ancient families present in any of the three species were classified as “Ancient1”, and those that 

were not present in the three species were classified as “Ancient2”. A jitter function was used to 

finely modify the point positions to display overlapping points. 

  



Supplementary Tables: 

Supplementary Table S1. Functional description of the 62 identified communities in the ATRM.  

For 62 of the identified communities containing no fewer than five members, GO enrichment for 

each community was performed using topGO, and genes with “Biological Process” annotation 

were used as the background. The P values were adjusted for multiple tests using the method of 

Benjamini and Hochberg. Based on the enriched GO terms, we assigned a name for the 

community whose enriched terms are consistent in terms of biological processes. (Excel file) 

  



Supplementary Table S2. Topological structures of the predicted developmental and stress 

response sub-networks in A. thaliana. We used Match to predict these networks in the upstream 

1,000 bp of the gene transcription start site (TSS) using binding matrices from TRANSFAC. 

Regulations with binding sites of no fewer than two and an expression correlation coefficient 

value (Pearson correlation coefficients, PCCs) of no lower than 0.30, 0.35, and 0.40 were adopted 

as the putative regulations. The PCCs for Arabidopsis genes were downloaded from ATTED-II 

(Obayashi, et al. 2009). 

PCC
 

Threshold 

Development  Stress response 

<Targets per TF> TF-TF (%)
* 

 <Targets per TF> TF-TF (%) 

0.30 23.5 28.9  37.4 21.6 

0.35 13.6 36.1  26.5 23.0 

0.40 6.8 40.7  18.1 26.5 

*
TF-TF (%): Proportion of regulations between two TFs 

  



Supplementary Table S3. Three-node regulatory patterns screened from corresponding 

transcriptional regulatory networks using Mfinder 1.2. The identified network motifs are 

highlighted in blue under default thresholds (P < 0.01, Mfactor > 1.10 and Uniqueness ≥ 4) (Milo, 

et al. 2002). 

Species Motif ID Nreal NRandom ± SD P
* 

Uniqueness
$ 

E. coli 

1 281,705 282,482.2 ± 56.3 1.00 144 

2 2,561 3,329.8 ± 56.0 1.00 28 

3 1,105 1,467.5 ± 61.3 1.00 6 

4 3,384 4,333.1 ± 63.4 1.00 36 

5 1,145 376.4 ± 56.0 0 23 

6 230 49.6 ± 30.8 0 6 

7 36 54.6 ± 3.7 1.00 4 

8 0 3.6 ± 0.7 1.00 0 

9 0 0.3 ± 0.5 1.00 0 

10 2 1.0 ± 1.0 0.27 1 

11 12 3.5 ± 1.8 0 2 

12 1 0.4 ± 0.6 0.35 1 

13 1 0.0 ± 0.1 0.01 1 

S. cerevisiae 

1 89,808 89,897.8 ±10.4 1.00 86 

2 1,202 1,291.8 ±10.3 1.00 21 

3 271 271.9 ±4.1 0.69 2 

4 1,581 1,671.6 ±10.5 1.00 39 

5 147 57.0 ±10.3 0 12 

6 4 3.5 ±2.0 0.44 2 

7 11 10.3 ±1.0 0.64 2 

8 1 0.9 ±0.3 0.93 1 

9 0 0.0 ±0.2 1.00 0 

10 0 0.1 ±0.3 1.00 0 

11 0 0.2 ±0.5 1.00 0 

12 0 0.1 ±0.3 1.00 0 

13 0 0.0 ±0.0 1.00 0 

A. thaliana 

1 4,944 5,230.2 ± 7.9 1.00 109 

2 2,058 2,355.1 ± 9.0 1.00 52 

3 439 577.3 ± 4.9 1.00 17 

4 1,763 2,068.3 ± 7.7 1.00 77 



5 303 46.2 ± 7.4 0 37 

6 53 4.5 ± 2.1 0 10 

7 286 386.0 ± 5.3 1.00 15 

8 44 70.9 ± 2.5 1.00 6 

9 9 1.9 ± 1.4 0.001 3 

10 22 3.2 ± 1.9 0 6 

11 34 4.6 ± 2.3 0 8 

12 25 2.6 ± 1.6 0 8 

13 2 0.5 ± 0.7 0.08 1 

*P was calculated based on 1,000 randomized networks 

$
The number of distinct sets of nodes involved in this regulatory pattern in the real network 

  



Supplementary Table S4. (A-B) Enriched biological processes (top 20) for TFs involved in the 

network motifs (motifs 5 and 6) that were also enriched in the unicellular organisms E. coli and S. 

cerevisiae (A) and enriched processes for those involved in the novel network motifs (motifs 10, 

11, and 12) (B). The TFs with biological process annotations were used as the background. (C) 

Enriched biological processes (P < 0.01) for TFs involved in motif 10, which was absent from 

metazoan transcriptional regulatory networks. TFs involved in developmental processes were 

used as background to further explore the distribution of these motifs in developmental processes.  

 

A 

GO ID GO term P Adjusted P 

GO:0051093 negative regulation of developmental process 4.0e-07 0.0005 

GO:0048518 positive regulation of biological process 2.1e-06 0.0013 

GO:0031323 regulation of cellular metabolic process 4.8e-06 0.0017 

GO:0019222 regulation of metabolic process 6.0e-06 0.0017 

GO:0050794 regulation of cellular process 9.8e-06 0.0017 

GO:0009893 positive regulation of metabolic process 1.0e-05 0.0017 

GO:0031325 positive regulation of cellular metabolic process 1.0e-05 0.0017 

GO:0048522 positive regulation of cellular process 1.6e-05 0.0021 

GO:0044237 cellular metabolic process 1.8e-05 0.0021 

GO:0065007 biological regulation 2.0e-05 0.0021 

GO:0001708 cell fate specification 2.1e-05 0.0021 

GO:0032501 multicellular organismal process 2.1e-05 0.0021 

GO:0009987 cellular process 2.4e-05 0.0021 

GO:0048856 anatomical structure development 2.5e-05 0.0021 

GO:0050789 regulation of biological process 2.6e-05 0.0021 

GO:0080090 regulation of primary metabolic process 3.9e-05 0.0026 

GO:0010077 maintenance of inflorescence meristem identity 4.0e-05 0.0026 

GO:0010187 negative regulation of seed germination 4.2e-05 0.0026 

GO:0008152 metabolic process 4.2e-05 0.0026 

GO:0048646 anatomical structure formation involved in morphogenesis 4.6e-05 0.0027 

 

B 

GO ID GO term P Adjusted P 

GO:0048731 system development 3.2e-16 3.8e-13 

GO:0048856 anatomical structure development 7.9e-16 4.7e-13 

GO:0007275 multicellular organismal development 3.6e-15 1.4e-12 

GO:0032501 multicellular organismal process 7.9e-15 2.4e-12 



GO:0032502 developmental process 4.2e-14 1.0e-11 

GO:0048608 reproductive structure development 1.8e-13 3.6e-11 

GO:0003006 developmental process involved in reproduction 9.6e-13 1.6e-10 

GO:0000003 reproduction 2.1e-12 2.8e-10 

GO:0022414 reproductive process 2.1e-12 2.8e-10 

GO:0009888 tissue development 7.5e-12 8.9e-10 

GO:0010073 meristem maintenance 3.4e-11 3.7e-09 

GO:0007389 pattern specification process 9.6e-11 9.5e-09 

GO:0003002 regionalization 1.1e-10 1.0e-08 

GO:0048513 organ development 1.3e-10 1.1e-08 

GO:0048507 meristem development 7.6e-10 6.0e-08 

GO:0030154 cell differentiation 3.9e-09 2.9e-07 

GO:0001708 cell fate specification 5.0e-09 3.4e-07 

GO:0045165 cell fate commitment 5.1e-09 3.4e-07 

GO:0009908 flower development 6.5e-09 4.1e-07 

GO:0045596 negative regulation of cell differentiation 9.1e-09 5.3e-07 

 

C 

GO ID GO term P Adjusted P 

GO:0010022 meristem determinacy 3.4e-09 1.8e-06 

GO:0010582 floral meristem determinacy 3.4e-09 1.8e-06 

GO:0010073 meristem maintenance 2.7e-08 9.3e-06 

GO:0009888 tissue development 1.1e-07 2.5e-05 

GO:0045596 negative regulation of cell differentiation 1.2e-07 2.5e-05 

GO:0048513 organ development 5.7e-07 9.8e-05 

GO:0048507 meristem development 1.0e-06 1.5e-04 

GO:0010074 maintenance of meristem identity 2.3e-06 3.0e-04 

GO:0045595 regulation of cell differentiation 5.7e-06 6.5e-04 

GO:0019827 stem cell maintenance 8.0e-06 6.9e-04 

GO:0048863 stem cell differentiation 8.0e-06 6.9e-04 

GO:0048864 stem cell development 8.0e-06 6.9e-04 

GO:0048523 negative regulation of cellular process 4.4e-05 0.0035 

GO:0048468 cell development 5.2e-05 0.0038 

GO:0030154 cell differentiation 6.8e-05 0.0047 

 

 

  



Supplementary Table S5. TF numbers in each family in 28 species with genome sequences in 

PlantTFDB 2.0. By dating the time of emergence based on 28 plants with sequenced genomes, 

we classified 54 TF families present in the most recent common ancestor (MRCA) of land plants 

into two types: ancient and novel families. The TF families present in any of the nine green alga 

species were defined as ancient families (in black), and the TF families present in the MRCA of 

19 land plants but absent from the nine green alga species were defined as novel families (in 

cyan). (Excel file) 

  



Supplementary Table S6. (A) Origin types of the 19 novel TF families in A. thaliana. (B) 

Enriched biological processes (top 20) for the TFs of novel families. The TFs with biological 

process annotations with experimental evidence were used as the background. 

 

A 

Origin type Family 

New signature domain
 

BES1, EIL, GRAS, GRF, HRT-like, LBD, LFY, NAC, 

NZZ/SPL, SRS, STAT, TCP, Trihelix, VOZ, ZF-HD 

New combination
 

ARF, HD-ZIP, MIKC, RAV 

 

B 

GO ID GO term P Adjusted P 

GO:0048731 system development 3.9e-14 3.6e-11 

GO:0048856 anatomical structure development 5.8e-14 3.6e-11 

GO:0048513 organ development 1.3e-12 5.4e-10 

GO:0032502 developmental process 1.8e-11 4.5e-09 

GO:0007275 multicellular organismal development 1.8e-11 4.5e-09 

GO:0032501 multicellular organismal process 2.4e-11 5.0e-09 

GO:0022621 shoot system development 1.4e-10 2.2e-08 

GO:0048367 shoot development 1.4e-10 2.2e-08 

GO:0048366 leaf development 5.5e-09 7.6e-07 

GO:0048827 phyllome development 1.3e-08 1.6e-06 

GO:0010016 shoot morphogenesis 1.9e-08 2.1e-06 

GO:0050793 regulation of developmental process 2.2e-07 2.3e-05 

GO:0009965 leaf morphogenesis 1.3e-06 0.0001 

GO:0051093 negative regulation of developmental process 2.8e-06 0.0003 

GO:0009908 flower development 3.0e-06 0.0003 

GO:0009791 post-embryonic development 5.9e-06 0.0005 

GO:0009653 anatomical structure morphogenesis 8.8e-06 0.0006 

GO:0048608 reproductive structure development 9.0e-06 0.0006 

GO:0061458 reproductive system development 9.0e-06 0.0006 

GO:0045962 positive regulation of development, heterochronic 1.8e-05 0.0011 

 

  



Supplementary Table S7. Summary of ancient- and novel-family TFs in E. coli, S. cerevisiae, 

and H. sapiens. 

Species  Ancient Novel 

E. coli Family number 30 8 

TF number 216 9 

TF with regulatory specificity 64 1 

S. cerevisiae Family number 23 4 

TF number 104 62 

TF with regulatory specificity 56 21 

H. Sapiens Family number 32 24 

TF number 1,234 211 

TF with regulatory specificity 85 50 

  



Supplementary Table S8. Correlation between the binding specificities of TFs and their wiring 

preferences in networks. (Excel file) 

(A) Information content (IC) of TFs and their wiring in the ATRM. The degree is represented as 

the connectivity of this TF in the ATRM. The columns Motifs (5, 6) and Motifs (10, 11, 12) list 

the number of motifs in which this TF is involved. Based on their ICs, TFs were divided into two 

types: high IC (> the median IC [7.67]) and low IC (< the median IC).  

(B) Correlation between the binding specificity of TFs and the proportion of TFs to target genes 

in A. thaliana. Spearman's rank correlation between the information content of TFs and the 

proportion of TFs to target genes: ρ = 0.46 and P = 0.02.  

(C) Correlation between the binding specificity of TFs and the proportion of TFs to target genes 

in E. coli. Spearman's rank correlation between the information content of TFs and the proportion 

of TFs to target genes: ρ = 0.31 and P = 0.03.  

(D) Correlation between the target number of TFs and the proportion of TFs to target genes in S. 

cerevisiae. Spearman's rank correlation between the TF target gene number and the proportion of 

TFs to target genes: ρ = -0.36 and P = 0.0003.  

(E) Correlation between TF binding specificity and the proportion of TFs to target genes in H. 

sapiens. Spearman's rank correlation between the information content of TFs and the proportion 

of TFs to target genes: ρ = 0.47 and P = 0.009. 

 

  



Supplementary Table S9. The wiring positions of novel- and ancient-family TFs in biological 

processes. The numbers in the table represent the number of TFs either without clustering (A) or 

with clustering based on the orthologous genes in A. lyrata (B), V. vinifera (C), O. sativa (D), and 

P. patens (E). 

A 

Type Development Stress response 

Novel 109 24 

Ancient 187 181 

One-tailed Fisher's exact test: P = 8.69e-11, odds ratio= 4.38 

 

B 

Type Development Stress response 

Novel 98 24 

Ancient 179 173 

One-tailed Fisher's exact test: P = 4.03e-09, odds ratio= 3.94 

 

C 

Type Development Stress response 

Novel 70 17 

Ancient 106 100 

One-tailed Fisher's exact test: P = 1.79e-06, odds ratio= 3.87 

 

D 

Type Development Stress response 

Novel 54 9 

Ancient 95 91 

One-tailed Fisher's exact test: P = 4.27e-07, odds ratio= 5.71 

 

E 

Type Development Stress response 

Novel 26 7 

Ancient 49 43 

One-tailed Fisher's exact test: P = 0.008, odds ratio= 3.23 



Supplementary Table S10. The wiring positions of novel- and ancient-family TFs that emerged 

during plant landing. The numbers in the table represent the number of TFs either without 

clustering (A) or with clustering based on the orthologous genes in P. patens (B). 

 

A 

Type Development Stress response 

Novel 77 19 

Ancient 80 81 

One-tailed Fisher's exact test: P = 6.64e-07, odds ratio= 4.08 

 

B 

Type Development Stress response 

Novel 25 6 

Ancient 34 32 

One-tailed Fisher's exact test: P = 0.007, odds ratio= 3.87 

 

 

  



Supplementary Table S11. The wiring positions of young and old TFs in biological processes. 

We classified TFs emerged before the divergence of the MRCA of A. thaliana and P. patens as 

old TFs and classified those emerged after the divergence of the MRCA of A. thaliana and P. 

patens as young TFs. 

Type Development Stress response 

Young 123 95 

Old 76 46 

One-tailed Fisher's exact test: P = 0.87, odds ratio= 0.78 
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